from__future__importprint_functionimporttensorflowastfimportnumpyimportmatplotlib.pyplotaspltrng=numpy.random# Parameterslearning_rate=0.01training_epochs=1000display_step=50# Training Datatrain_X=numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])train_Y=numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])n_samples=train_X.shape[0]# tf Graph InputX=tf.placeholder("float")Y=tf.placeholder("float")# Set model weightsW=tf.Variable(rng.randn(),name="weight")b=tf.Variable(rng.randn(),name="bias")# Construct a linear modelpred=tf.add(tf.multiply(X,W),b)# Mean squared errorcost=tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_samples)# Gradient descent# Note, minimize() knows to modify W and b because Variable objects are trainable=True by defaultoptimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)# Initialize the variables (i.e. assign their default value)init=tf.global_variables_initializer()# Start trainingwithtf.Session()assess:# Run the initializersess.run(init)# Fit all training dataforepochinrange(training_epochs):for(x,y)inzip(train_X,train_Y):sess.run(optimizer,feed_dict={X:x,Y:y})# Display logs per epoch stepif(epoch+1)%display_step==0:c=sess.run(cost,feed_dict={X:train_X,Y:train_Y})print("Epoch:",'%04d'%(epoch+1),"cost=","{:.9f}".format(c), \
"W=",sess.run(W),"b=",sess.run(b))print("Optimization Finished!")training_cost=sess.run(cost,feed_dict={X:train_X,Y:train_Y})print("Training cost=",training_cost,"W=",sess.run(W),"b=",sess.run(b),'\n')# Graphic displayplt.plot(train_X,train_Y,'ro',label='Original data')plt.plot(train_X,sess.run(W)*train_X+sess.run(b),label='Fitted line')plt.legend()plt.show()# Testing example, as requested (Issue #2)test_X=numpy.asarray([6.83,4.668,8.9,7.91,5.7,8.7,3.1,2.1])test_Y=numpy.asarray([1.84,2.273,3.2,2.831,2.92,3.24,1.35,1.03])print("Testing... (Mean square loss Comparison)")testing_cost=sess.run(tf.reduce_sum(tf.pow(pred-Y,2))/(2*test_X.shape[0]),feed_dict={X:test_X,Y:test_Y})# same function as cost aboveprint("Testing cost=",testing_cost)print("Absolute mean square loss difference:",abs(training_cost-testing_cost))plt.plot(test_X,test_Y,'bo',label='Testing data')plt.plot(train_X,sess.run(W)*train_X+sess.run(b),label='Fitted line')plt.legend()plt.show()
Reference
Manuel Cuevas
Hello, I'm Manuel Cuevas a Software Engineer with background in machine learning and artificial intelligence.