How to mine stock values history from Google using Python
By using pandas_datareader.data you can easily extract from the web any stock history value. The following example is a function that will save a CVS file of the stock values from the input sock name.
################################################################################## # Downloads data and save it as CSV # To get fundamentals you would have to pay # https://www.reddit.com/r/algotrading/comments/4byj5k/is_there_a_python_script_to_get_historical/ ################################################################################## def getWebData(stockName, dataDates): import pandas_datareader.data as web #refresh files only if they haven't done within the day filePath = "../data/" + stockName + '.csv' #refresh data ones a day todayDate = dataDates[1] #if file exist, get files modification data. Else stamp old date if (path.exists(filePath)): fileDate = datetime.fromtimestamp(path.getmtime(filePath)).date() else: fileDate = datetime.now().date() - timedelta(days=1) if todayDate > fileDate: # Define which on-line source one should use data_source = 'google' # We would like all available data from dataDates[0] until dataDates[1] start_date = dataDates[0] end_date = todayDate # User pandas_reader.data.DataReader to load the desired data. As simple as that. try: panel_data = web.DataReader(stockName, data_source, start_date, end_date) panel_data.to_csv(filePath) except: print(stockName, "was not found") return (0) return (filePath